
Characteristics-driven returns in equilibrium

Guillaume Coqueret∗

December 21, 2022

Abstract

We propose an equilibrium construction process of asset prices that generates returns
which depend on firm characteristics, possibly in a linear fashion. One key requirement is that
agents must have demands that rely separately on firm characteristics and on the log-price
of assets. Market clearing via exogenous (non-factor driven) supply, combined with linear
demands in characteristics, yields the sought form. The coefficients in the resulting linear
expressions are scaled net aggregate demands for characteristics, as well as their variations,
and both can be jointly estimated via panel regressions. Empirically, our results reveal that
latent demands, which are orthogonal to characteristics, often explain a large proportion of
the dispersion in average returns. Characteristics only become relevant when they survive
LASSO selections that discard a large majority of their peers.

1. Introduction
A central question in financial economics pertains to why assets experience different returns.
There are mainly three streams of explanations to why that may be the case. First, assets
may earn contrasting returns because they have idiosyncratic exposures to various sources of
risk, or factors, as put forward in Merton (1973), Ross (1976), and Fama and French (1993).
A second family of explanations relies on behavioural models, in which investor preferences or
beliefs drive demand towards particular stocks, thereby generating heterogeneity in the cross-
section of returns (Barberis and Shleifer (2003), Barberis et al. (2015)). Another angle related
to these approaches is mispricing, whereby agents overestimate or under-appreciate prices, often
due to cognitive biases (see, e.g., Lakonishok et al. (1994), Daniel et al. (1998), Hirshleifer (2001)
and Stambaugh and Yuan (2017)). Finally, a third portion of the literature, which sometimes
overlaps with the first two, argues that returns differ across assets simply because these assets are
different. It is their characteristics (their size, sector, balance sheet structure, past performance,
riskiness of business lines, governance, etc.) which have an impact on their profitability (Daniel
and Titman (1997)). As such, these characteristics can be used as independent variables in
predictive models, as in Lynch (2001) and Gu et al. (2020), or they can be used to create more
efficient risk factors (Daniel et al. (2020)).
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Technically, factors models benefit from the simplicity of parsimony because, in practice,
a handful of variables are used to explain the entirety of cross-sectional differences in returns.
Assets differ in their exposure to these variables: this is the source of heterogeneity in returns.
However, one major issue is the definition or identification of the factors. When they are latent
(as in Chamberlain (1983), Connor and Korajczyk (1993), Bai and Ng (2002), or, more recently,
in Kelly et al. (2019), and Lettau and Pelger (2020a,b) to cite but a few), they are often hard to
understand - though recent advances propose enlightening interpretations (see Clarke (2021)).
When they are explicit and based on prior empirical conclusions (e.g., SMB or HML in Fama and
French (1993) or WML from Jegadeesh and Titman (1993)), they remain somewhat arbitrary.1

On the other hand, firm characteristics are directly observable, though subtleties in mea-
surement can lead to diverging results.2 Recently, some contributions have sought to compare
the efficiency of characteristics-based versus factor-based models in asset pricing.3 For instance,
Hou et al. (2011), Goyal and Jegadeesh (2018), Chordia et al. (2019), Fama and French (2020),
Raponi et al. (2020) and Chib et al. (2021)) all report that the former have a better explana-
tory power over stock returns. Jacobs and Levy (2021) provide some historical perspectives on
the differences between the two approaches. In fact, this superiority may come from investors’
demand, which is more likely to be driven by characteristics than factors (see Lawrenz et al.
(2022)). On the practitioners’ side, Brightman et al. (2021) find that characteristics generate
more accurate predictions and, thus, are more likely to deliver out-of-sample alpha.

The first purpose of the present article is to provide a theoretical, equilibrium-based, ground-
ing for models that use firm characteristics as predictors of future returns, exactly as in Gu et al.
(2020). Indeed, as the latter put it: “improved predictions do not tell us about economic mech-
anisms or equilibria”. Here, we propose a definition for a partial equilibrium4 in which the
demand of agents is tailored to yield a special form for asset (log-)returns. The sought linear
expression is obtained under particular assumptions. Notably, agents are required to build their
allocations (net demands) as linear functions of characteristics plus a multiple of the log-price
of assets. We show that these allocations can be decomposed as linear combinations of charac-
teristics if agents believe that expected returns are linear functions of characteristics. Loosely
speaking, the model then becomes self-fulfilling because the agents’ assumption materializes in
equilibrium. Nonetheless, one important suggestion from the model is that returns should also
depend on characteristics’ change from the previous period, and not only on their levels.

1It is nonetheless a very interesting exercise to theoretically justify factors a posteriori, akin to transparent
HARKing (Hollenbeck and Wright (2017)). This has generated an insightful literature, and we refer for instance
to the following common anomalies:

• size: Berk (1995);
• value: Zhang (2005), Lettau and Wachter (2007);
• size and value: Gomes et al. (2003), Campbell and Vuolteenaho (2004), Arnott et al. (2015);
• momentum: Hong and Stein (1999), Grinblatt and Han (2005), Biais et al. (2010), Vayanos and Woolley

(2013), Choi and Kim (2014).
2This is well documented for instance for the value factor (Asness and Frazzini (2013) and Hasler (2021)), and

in sustainable investing (Dimson et al. (2020) and Avramov et al. (2021)) - not to mention firm-specific sentiment.
3It is interesting to note that a recent trend in the literature expects to get the best of both worlds by resorting

to characteristics within factor models, their alphas and their loadings: see Cederburg and O’Doherty (2015),
Cosemans et al. (2016), Dittmar and Lundblad (2017), Kelly et al. (2019), Connor et al. (2021), Ge et al. (2021),
Kim et al. (2021a,b) and Windmüller (2022).

4Recently, general equilibrium models based on characteristics have emerged. We refer for example to Alti and
Titman (2019), Betermier et al. (2021), Betermier et al. (2021). In Buss et al. (2021), demand depends essentially
on one latent variable.
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The derivation of equilibrium returns provides a novel interpretation for the loadings of
predictive panels relying on firm characteristics. All estimated coefficients pertain to scaled
demands in characteristics, and changes thereof. Therefore, the model is able to extract the
relative demand in each characteristic - all without any data on flows or holdings, as in Koijen
and Yogo (2019). The outcome gives two types of insights. The first is the sign of the demand,
e.g., when investors are on average more “value” than “growth”, so to speak. The second is the
relative scale of demands across factors, i.e., when agents for instance seek exposure to size more
than to momentum, or vice-versa.

Our representation for returns lies at the confluence of two representations in asset pricing.
On the one hand, the cross-sectional factors in Fama and French (2020), recalling an interpreta-
tion from Fama (1976), link returns and characteristics in a simple linear fashion. However, this
link holds for one time period only and is not suited to estimate asset-specific demands that are
not driven by characteristics. In contrast, Koijen and Yogo (2019) propose a model which allows
latent demands, but which is numerically less tractable and require holdings data. The model
we propose can be viewed as a mix between these two approaches. It has a simple formulation as
in cross-sectional factors, yet it is meant to include asset-level demands that cannot be captured
by characteristics.

The expressions that we obtain for individual returns can be aggregated into sorted portfolio
returns. This reveals the importance of characteristics’ interactions in the decomposition of
anomalies. The prevalence of the latter for asset pricing is also documented in Ross (2021) and
Duan et al. (2021). Three terms emerge in the decomposition of long-short portfolio returns: the
loading of the characteristic used for the sorting, the average fixed effect of the portfolio, and the
covariance terms. Our empirical results indicate that the fixed effect terms often dominate the
loadings, and the interaction components compensate this asymmetry. This is in line with the
findings of Koijen and Yogo (2019), who also document the prominent impact of latent demands:
“changes in latent demand are the most important, explaining 81 percent of the cross-sectional
variance of stock returns”. Nevertheless, the magnitudes of the terms are strongly dependent on
the size of the rolling windows that are used for the estimations. As sizes increase, the prevalence
of fixed effects decreases.

The final part of the paper raises the following, somewhat controversial, question: what is
the value of firm characteristics in explaining future returns? Most of the evidence we propose
suggests that standard linear models fail badly in this task, and that they capture mostly noise.
This is in line with Green et al. (2017), Freyberger et al. (2020) and Huang et al. (2021), who all
conclude that a large majority of characteristics fail to provide valuable predictive information.
Our last batch of results suggests that investor preferences (demand estimates) shift in time and
that the prevalence of characteristics in explaining future returns is very time-varying, as are
factor premia (Gagliardini et al. (2016)). We find that a few dozen of characteristics suffice to
explain a large portion of the cross-section of average returns, as long as the set of predictors is
allowed to change from one period to another. Relevant characteristics are filtered from LASSO
regressions: some are often selected (e.g., momentum), others come in and out of the set.
Similarly to pockets of predictability (Farmer et al. (2022)), there seem to be pockets of relevance
for characteristics, which are periods of times during which they are useful in explaining the
cross-section of returns.

The remainder of the article is structured as follows. In Section 2, we present the model and
some of its theoretical properties. In Section 3, we derive some implications for asset pricing
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anomalies. Section 4 is dedicated to the baseline empirical study while a focus on the relevance
of characteristics is provided in Section 5. Finally, Section 6 concludes. Three proofs and
additional material are located in the Appendix.

2. The model

2.1. Discussion on partial economic equilibria

In financial economics, the simplest market clearing equation is the following:

dt(pt) = st(pt), (1)

where the vectors of aggregate demands dt and supplies st depend on the vector of prices pt.
To ease the calculations, it is customary to model the demand side only. One rationale for this
choice is that researchers prefer to investigate the impact of the demand side on asset prices.
Often, investors are separated into heterogeneous groups. One group will craft its allocation
decisions based on preferences as well as on some information set, including the price of the
asset, while the other group is considered as market maker (liquidity provider, the right side of
(1)) and trades independently for the price level. The equation then becomes

dt(pt) = st =⇒ pt = d−1
t (st), (2)

where the implication only holds when the inverse (multivariate) mapping d−1
t is well-defined.

Going into further detail, the total demand function dt can be broken down if we consider
heterogeneity in the demand of agents, in which case,

I∑
i=1

At,iwt,i(pt) = st, (3)

where At,i is the time-t wealth of agent i that is invested on the market and wt,i is the cor-
responding relative buy or sell quantities (strictly speaking they are not necessarily portfolio
compositions and we discuss this nuance later on). One favorable case is when this demand
form can be factorized into:(

I∑
i=1

At,iwt,i

)
(pt) = st =⇒ pt =

(
I∑

i=1
At,iwt,i

)−1

(st), (4)

where, again, the implication only holds if the inverse makes sense. The factorization can occur
when wt,i is separable, i.e., wt,i = wi × wt(pt), or when the price-driven part is linear, that is,
when wt,i = at,i,n + bt,ipt. Under reasonable assumptions, the bt,i in the latter form is supposed
to be negative, because demand usually decreases with price.5 Such linear forms can be obtained
via mean-variance preferences (see, e.g., Admati (1985) and Kacperczyk et al. (2019)).

5There is an ongoing debate on whether demand curves for stocks slope down. Empirical analyses from Shleifer
(1986), Kaul et al. (2000), Petajisto (2009), Hau et al. (2010) and Buss et al. (2021) support this conjecture, but
those in Cha and Lee (2001) and Jain et al. (2019) do not. Wurgler and Zhuravskaya (2002) conclude that it
depends on whether or not the stock has substitutes on the market. In Koijen and Yogo (2019), the uniqueness
of prices requires that demands be strictly downward sloping for all investors.
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The main issues with most theoretical models is that they yield prices and not returns. If we
want to obtain returns from Equation (4), we must tackle the following expressions (logarithmic
versus arithmetic returns):

rt+1 = log

diag

( I∑
i=1

At,iwt,i

)−1

(st)

−1(
I∑

i=1
At+1,iwt+1,i

)−1

(st+1)

 , or (5)

rt+1 = diag

( I∑
i=1

At,iwt,i

)−1

(st)

−1(
I∑

i=1
At+1,iwt+1,i

)−1

(st+1) − 1, (6)

where diag(v) fills a diagonal matrix with the values of vector v. The two expressions above are
impractical to work with in all generality. It is therefore imperative to impose a strong structure
on the agent demands wt,i to obtain tractable formulae for returns. This is the purpose of the
next section. Closed-form expressions are not necessary for empirical applications as long as
prices or returns can easily be evaluated numerically (as is done in Koijen and Yogo (2019)).
Nonetheless, they often offer insightful interpretations.

2.2. Characteristics-based demands and returns

In this subsection and henceforth, we assume agents allocate according to firms’ characteristics.
Because characteristics can be of diverse nature, this requirement is not very strong theoretically.
Empirically, Bank et al. (2022) acknowledge that “demand from investors is strongly affected
by known stock characteristics”, which provides support for characteristics-driven demands. By
construction, as we will show, this generates a characteristics-based structure for assets’ log-
returns.

Time is discrete and denoted with t. Investors (or agents) on the market are indexed with
i = 1 . . . , I and they trade between N > 1 assets, which are indexed with n = 1, . . . , N . We
write pt,n for the time-t price of asset n. In addition to their prices, all assets are characterized by
exactly K indicators, c

(k)
t,n , for k = 1, . . . , K. These indicators are publicly disclosed and available

to all agents on the market. Common examples for equities include market capitalization (firm
size), accounting and valuation ratios, risk measures (volatility) and past performance (stock
momentum).6 Examples for bonds encompass durations or credit ratings. In the present paper,
we will restrict our analysis and examples to the case of stocks, but our theoretical results
hold for any asset class, as long as the price is determined by the market clearing mechanism
mentioned above.

The c
(k)
t,n need not be raw values, but can represent synthetic scores which are scaled in the

cross-section of stocks, as is now commonplace in the literature on characteristics-based factor
models (e.g., Koijen and Yogo (2019), Kelly et al. (2019) and Freyberger et al. (2020)). We
write ct,n for the time-t K-dimensional vector of characteristics of asset n.

One central hypothesis of the model is that the weights (or demands) wt are unconstrained
and can be negative. For instance, this can correspond to the case where market clearing
operates on net demands. Markets and agents would be assumed to be mature so that, at
each time step, the latter adjust their portfolio by fine-tuning pre-existing positions. Following

6It could be debated whether alternative metrics, like stock-specific sentiment or ESG-related data fall into
this category. This discussion is outside the scope of this paper.
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Koijen and Yogo (2019), we assume that these demands are driven by agent’s preferences towards
assets’ characteristics. This is a rather weak assumption because our definition of characteristics
is large and it makes sense that agents form their allocation based on some observable criteria.
Reasoning with net demands instead of raw demands shares a clear proximity in spirit with
models that rely on trades instead of holdings, as in van der Beck (2022).

Koijen and Yogo (2019) show that characteristics-based demands can be viewed as optimal
if characteristics are informative for the evaluation of the first two moments of expected re-
turns. Several studies document the preference of certain investors for particular characteristics
(Froot and Teo (2008), Kumar (2009), Cronqvist et al. (2015), Betermier et al. (2017), Koijen
et al. (2020) and Balasubramaniam et al. (2021)), so that optimality is not necessarily an im-
perative requirement. Characteristics, or, more generally, signals, can be thought of providing
information about prices, e.g., via dividend innovations, as in Farboodi et al. (2022).

In addition to characteristics-driven investors, there exist external agents who trade purely
orthogonally to these attributes and act as market makers in our model. Consequently, they
provide a net supply for each stock, which we write st,n. We will not further mention these
external agents, except via this exogenous supply which they provide.

Because we reason in terms of net demand, we cannot resort to an exponential function, as
in Koijen and Yogo (2019), because net demands can be negative, e.g., when an agent wants to
reduce a position in an asset, or sell it short. Instead, we work with the general form

wt,i,n = at,i,n + b
(0)
t,i f(pt,n) + gt,i(ct−1,n), (7)

for the time-t demand of agent i in asset n. We will study particular shapes for the functions
f and gt,i subsequently. The above demand is expressed as a percentage of investor i’s wealth,
i.e., it can be considered as a portfolio composition, even though we do not impose that it sums
to one across all N firms.

The rightmost part of (7) implies that the factor-driven agents construct their portfolios
based on indicators which they observe or receive at time t − 1. In practice, it is not uncommon
that investors wait for quarterly updates in accounting disclosures before they rebalance their
portfolios. This convention does not affect most of the results in the paper. Simply put, if
characteristics’ time index is lagged (ct−1), they are predictors. If it is synchronous (ct), then
the model will explain returns but not predict them. Portfolio policies that are linear in firm
characteristics are widespread in the literature (see, e.g., Brandt et al. (2009), Hjalmarsson and
Manchev (2012), and Ammann et al. (2016)) and they will constitute an important special case
subsequently.

The separation of the price pt,n from the other characteristics ct−1,n in (7) is a crucial
technical requirement. In any equilibrium-based asset pricing model, the demand function of at
least some agents need to be expressed in terms of the price of the asset, which becomes the
unknown in a market clearing equation. Solving for this unknown yields the equilibrium price.
In Koijen and Yogo (2019), this is implicitly done via market equity, which is factorized into its
price versus number of shares components.

The constant at,i,n in Equation (7) tunes the demand of agent i towards asset n, regardless
of the asset’s attributes. It could for instance be driven by macro-economics factors, or private
information. Technically, it could be made stock-independent, so that at,i would evaluate the
global equity exposure of the agent that is independent from the characteristics. From an
estimation standpoint, the at,i,n will allow for an interesting interpretation which we mention
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later on. The central component b
(0)
t,i f(pt,n) is an important technical artefact that is used to

build the equilibrium price. Let us simply assume for now that the function f is monotonic.
If we denote with At,i each agent’s wealth that is subject to trading at time t, then market

clearing imposes that for each asset, total net demand matches total net supply, i.e.,
I∑

i=1
At,iwt,i,n = st,n. (8)

The most important assumption of the model is the separation, in the demand, between the
log-price and the other characteristics, which are unrelated to the former.7 This implies

I∑
i=1

At,i

(
at,i,n + b

(0)
t,i log(pt,n) + gt,i(ct−1,n)

)
= st,n, (9)

i.e.,

log(pt,n) =

total non-price related demand︷ ︸︸ ︷
I∑

i=1
At,i (at,i,n + gt,i(ct−1,n)) −

supply︷︸︸︷
st,n

−
I∑

i=1
At,ib

(0)
t,i︸ ︷︷ ︸

agg. demand for log-price

. (10)

Intuitively, it seems reasonable to assume that the denominator −
∑I

i=1 At,ib
(0)
t,i is positive, be-

cause we expect prices to decrease with supply. This amounts to posit that the aggregate demand
for log-prices is negative, which is a reasonable postulate. This is in fact very close to the main
technical assumption of Koijen and Yogo (2019). Therein, demand slopes for the logarithm of
market equity are negative for all investors, while we only require the aggregate slope to be
negative. This gives a simple formula for logarithmic returns:

rt+1,n = log
(

pt+1,n

pt,n

)

=
∑I

i=1 At+1,i (at+1,i,n + gt+1,i(ct,n)) − st+1,n

κt+1
−
∑I

i=1 At,i (at,i,n + gt,i(ct−1,n)) − st,n

κt

=
I∑

i=1
Bt+1,i (at+1,i,n + gt+1,i(ct,n)) −

I∑
i=1

Bt,i (at,i,n + gt,i(ct−1,n)) + st,n

κt
− st+1,n

κt+1
(11)

=
I∑

i=1
(Bt+1,iat+1,i,n − Bt,iat,i,n)︸ ︷︷ ︸

change in scaled
non-characteristic demand

+
I∑

i=1
(Bt+1,igt+1,i(ct,n) − Bt,igt,i(ct−1,n))︸ ︷︷ ︸

change in scaled
pure characteristic demand︸ ︷︷ ︸

g∗(ct,n,ct−1,n)

+ st,n

κt
− st+1,n

κt+1︸ ︷︷ ︸
supply shock︸ ︷︷ ︸

et+1,n

(12)
7Obviously, market capitalization or valuation ratios incorporate the price of the asset. But we assume for

analytical tractability that the scores ct,n are unrelated to asset prices. If characteristics are synthetic indicators
which are scaled in the cross-section of stocks, this hypothesis is not too far-fetched.
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where κt = −
∑I

i=1 At,ib
(0)
t,i > 0 is minus the aggregate demand for the log price and Bt,i = At,i/κt

are the scaled wealths. On purpose, we simplified the expression in the last line (at the root
of the horizontal brackets) by using the same notations as in Equations (1) and (2) from Gu
et al. (2020). This underlines that the result can be used as theoretical justification to rely
on model-agnostic machine learning techniques (based on characteristics) when modelling the
cross-section of asset returns.

Before we further specify the demand function, it is useful to discuss two weaknesses in
the above formulation. The first one is that the decomposition only works for logarithmic
returns. While they are close to their arithmetic counterparts, some difference may arise in the
cross-section of mean returns, especially if assets’ volatilities differ. This comes from a simple
application of the Taylor series of the mapping x 7→ log(1 + x) (see Hudson and Gregoriou
(2015)). The second drawback of the above expression is that it does not incorporate dividends:
returns are hence price returns and not total returns. The latter are therefore out of the scope
of our analysis.

2.3. The case of linear demands

An appealing special case of the demand component gt,i is the linear combination of character-
istics. This is for instance exploited in Brandt et al. (2009), or in Koijen and Yogo (2019) when
the linear form is exponentiated. The expression is simply:

gt,i(ct−1,n) = at,i,n +
K∑

k=0
b

(k)
t,i c

(k)
t−1,n, (13)

where the constants b
(k)
t,i determine the sign and appetite intensity of agent i for characteristic

k. For the sake of consistency with Equation (7), characteristic zero in the above specification
is the log-price.

In Koijen and Yogo (2019), such linear forms are obtained when agents believe in a single
factor model in which the first two moments of returns are estimated through firm characteristics.
In Lemma 1 below, we show that linear demands can be obtained via another theoretical route.
We recall that, for agent i, the expression for a mean-variance optimal portfolio has the form

w∗
t,i,n = γ−1

t,i Vt,i[rt+1]−1(r̄t + δt,i1),

where r̄t is the time-t vector of expected returns, γt,i is the time-t risk aversion of agent i , and
δt,i is a scalar chosen to satisfy the budget constraint. Under particular beliefs, this expression
can be factorized in a particular form, as stated below.

Lemma 1. If agent i believes that returns are driven by

rt+1 = Ctβt+1,i + et+1, (14)

then the optimal budget-constrained mean-variance portfolio weight for asset n can be written as

w∗
t,i,n = fi,n,1 +

K∑
k=0

c
(k)
t,n × fi,n,2, (15)

where fi,n,1 := fi,n,1(Ct, β̂t,i, Σ̂β,i, σ̂
2
e,i) and fi,n,2 := fi,n,2(Ct, β̂t,i, Σ̂β,i, σ̂

2
e,i) are scalars that

depend on the data Ct, as well on agent i’s estimations for the terms in Equation (14).

8



The proof of the lemma is located in Appendix B. Of course, strictly speaking, the weights
are not purely linear in the characteristics, because the latter are present in the definition of
the functions fn,1 and fn,2. The only difference between (15) and (13) is the time shift in
the characteristics from c

(k)
t,n to c

(k)
t−1,n. To take into account time lags in the diffusion of the

information, we henceforth stick with the latter.
Formally, it is always possible to express agent demands as a linear function of characteristics,

as long as an error term is allowed, which is how Koijen and Yogo (2019) proceed. The equation
w = Cb has exactly one solution if C is square (N = K) and non-singular. It has an infinite
number of solutions if K > N , and it has no solution if K < N , in which case w equals Cb plus
an additional error term. In the specification (13), the constant at,i,n can be assimilated to this
error term, as it captures the demand that is not driven by the characteristics.

The demand form (13) allows to change the notation and include the at,i,n terms in the sum,
so that the linearized form of Equation (12) now reads

rt+1,n =
I∑

i=1

(
Bt+1,iat+1,i,n − Bt,iat,i,n +

K∑
k=1

(
Bt+1,ib

(k)
t+1,ic

(k)
t,n − Bt,ib

(k)
t,i c

(k)
t−1,n

))
+ εt+1,n, (16)

where
εt+1,n = st,n

ηt
− st+1,n

ηt+1
(17)

is the innovation from the supply-side. We can then swap the two sums (in i and k) in the
central term and, for a given k, we can decompose the central shift in two ways, depending one
the factors we put forward:

I∑
i=1

(
c

(k)
t,nBt+1,ib

(k)
t+1,i − c

(k)
t−1,nBt,ib

(k)
t,i

)
(18)

= c
(k)
t,n

I∑
i=1

(
Bt+1,ib

(k)
t+1,i − Bt,ib

(k)
t,i

)
︸ ︷︷ ︸

β
(k)
t+1= change in scaled agg. demand

+
(
c

(k)
t,n − c

(k)
t−1,n

)
︸ ︷︷ ︸

past change in char.

I∑
i=1

Bt,ib
(k)
t,i︸ ︷︷ ︸

η
(k)
t = past demand

(first identity) (19)

= η
(k)
t+1(c(k)

t,n − c
(k)
t−1,n) + c

(k)
t−1,nβ

(k)
t . (second identity) (20)

In the above expressions, we use the term “demand” slightly improperly. η
(k)
t and β

(k)
t defined

in the brackets are in fact the purely characteristics driven components of the scaled demands.
The factor β

(k)
t can be viewed as the aggregate willingness to be exposed to the characteristics,

while η
(k)
t signals willingness to be exposed to variations in characteristics. However, we will

henceforth resort to this abuse of language and notation and refer to these terms as demands.
Following Section 9-D in Fama (1976), Fama and French (2020) argue that if returns are

linear functions of past values of firm characteristics, then the corresponding loadings (or slopes)
are returns of long-short portfolios. We underline that this statement only holds if loadings are
both time-dependent and are estimated via least square minimization.8

8Indeed, the expression r = Xb + e has OLS coefficients b̂ = (X ′X)−1X ′r, which is a linear combination of
returns, and hence, a portfolio (see also Kirby (2020)). Interestingly, Stevens (1998) proves a reverse identity in
which optimal portfolios can be obtained via regressions, though in this case the dependent variables are other
assets’ returns - see Goto and Xu (2015) and Deguest et al. (2018) for extensions of this approach. The links
between regressions and portfolios also include the intuitive interpretations of Theorem 1 in Britten-Jones (1999)
and in Leung and Tam (2021).
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In the two identities, the slope associated to a particular characteristic is the change in scaled
demand for this characteristic. Heuristically, scaled demands (resp., changes in demands) can be
viewed as portfolio weights (resp., changes in portfolio weights). But importantly, equilibrium
returns are also driven by variations in the characteristics as well. This seems to indicate that
momentum in firm attributes should be more investigated in the literature. Several contributions
tackle this topic (e.g., Ohlson and Shroff (1992), Chen (2003), Novy-Marx (2015), Blank and
McLemore (2020), and, to a certain extent, Gabaix and Koijen (2021) when the characteristic
is the expected dividend). Given the decompositions outlined above, we express the logarithmic
returns in a simple form.

Lemma 2. We assume that market clearing is defined in (8) and demands satisfy (7) and (13).
In partial equilibrium, it holds that,

rt+1,n = αt+1,n +
K∑

k=1

(
β

(k)
t+1c

(k)
t,n + η

(k)
t ∆c

(k)
t,n

)
+ εt+1,n, or (21)

rt+1,n = αt+1,n +
K∑

k=1

(
β

(k)
t c

(k)
t−1,n + η

(k)
t+1∆c

(k)
t,n

)
+ εt+1,n, (22)

where ∆c
(k)
t,n = c

(k)
t,n − c

(k)
t−1,n is the local change in the characteristic, β

(k)
t is the change in scaled

aggregate demand for characteristic k, and η
(k)
t is the scaled demand for characteristic k defined

in Equation (19). Innovations terms εt+1,n come from the supply side and are given in (17).
Finally, the stock-specific constant is the change in aggregate scaled demand that is not driven
by characteristics: αt+1,n = ∑I

i=1(Bt+1,iat+1,i,n − Bt,iat,i,n).

We list a few comments on this result below.
• In the main equation of the lemma, the time index for the characteristics could be shifted

from t to t + 1 and from t − 1 to t. This corresponds to the case when agents form their
portfolios based on synchronous data in Equation (7).

• In practice, the panel form of the equations will assume that the coefficients α, β and η
are not time-dependent. Indeed, because of the αt+1,n, the system would be undetermined
otherwise. Hence, we will use samples that are narrow chronologically so as to obtain
local estimates. Then, the α̂n could be interpreted as a fixed, random, or between
effects, depending on the modelling assumptions. Using the terminology of Koijen and
Yogo (2019), it is the average latent demand for asset n. Strictly speaking, it is the
scaled net demand that is formulated by agents for reasons orthogonal to characteristics,
e.g., hedging motives.

• One implication of the Lemma is that the time-t conditional expectation of the returns is
given by

Et[rt+1,n] =
K∑

k=1

(
η

(k)
t ∆c

(k)
t,n + c

(k)
t,nEt

[
β

(k)
t+1

])
+ Et[αt+1,n + εt+1,n] (23)

=
K∑

k=1

(
β

(k)
t c

(k)
t−1,n + ∆c

(k)
t,nEt

[
η

(k)
t+1

])
+ Et[αt+1,n + εt+1,n]. (24)

In short, and quite naturally, the conditional average returns depend on expected changes
in aggregate demand and aggregate supply, plus some term that reflects aggregate prefer-
ences that are orthogonal to characteristics. These expressions hold in all generality under
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the assumptions stated above. One important caveat is that the model is contingent on
the choice of the characteristics. It is of course impossible to list all indicators monitored
and considered by all agents around the world. Implicitly, indicators that are omitted are
integrated in the right part of the equations, that is, in the asset-specific term or in the
supply side of the model.

• Because of the simple linear form, the pricing power of characteristics and their varia-
tions is directly linked to the magnitude of the corresponding demand. A characteristic
c with large absolute demand |η| will have a sizeable impact via ∆c, while a change ∆c
with an important absolute demand |β| will strongly drive returns through c. Reversely,
characteristics with negligible demands will only play a marginal role.

• The relationship in the lemma is predictive because of the time lag between characteristics
ct and returns rt+1. If agents trade rapidly based on ct in Equation (7), the lag vanishes
and the characteristics can only explain returns but not forecast them.

• In a sense, Lemma 2 is self-fulfilling. If we posit that all non-supply side agents believe
that returns are linear mappings of characteristics as in Lemma 1, then, loosely speaking,
their assumption materializes in Lemma 2, if we omit the ∆ terms.

2.4. A word on log-price demands

Logarithmic forms such as the one in the left side of Equation (9) are rare in the literature
because economists usually prefer to avoid negative demands.9 In a financial framework in
which agents hold shares and adjust their portfolios, negative demands reflect a decision to
reduce positions in particular assets. Likewise, if agents are allowed to sell stocks short (via
negative portfolio weights), we consider that they are expressing a negative demand.

If the simple links between returns and characteristics in Lemma 2 have some empirical
validity, this would imply that agents’ demands can be modelled with a logarithmic form.10

As a function of the price, the demand is simply written

w = a − b × log(p), (25)

where a > 0 is the appeal of the the object (the stock) and b > 0 is the slope. The corresponding
elasticity is equal to b(a − b log(p))−1. Notably, it increases to infinity when the price shrinks to
zero. While this could be an issue, we recall that most studies in asset pricing exclude penny
stocks from empirical analyses.

In our model, the appeal is solely driven by the characteristics (plus a constant term). The
slope is purely investor-specific. The relationship is illustrated in Figure 1. The demand can be
increased by higher appeal, or lower slope, or both.

This form is very opportune for aggregation, which is one property we have largely exploited
in the previous subsection. If there are I agents, each with demand wi = ai −bi log(p), the latter
can be summed to obtain (25), where w, a, and b are the sums of the respective individual values.
In addition, the form (25), when equated to some exogenous supply s yields p = exp

(
a−s

b

)
which

has intuitive interpretations. The price increases with a, but decreases with the slope and the
supply.

9Though, in all generality, linear forms such as those in Admati (1985) and Kacperczyk et al. (2019) can also
be subject to negative demands.

10Conversely, portfolio holdings from retail or institutional investors could corroborate or invalidate this form,
thereby confirming or contradicting the result of the lemma. This is out of the scope of the paper.
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Fig. 1. Demand curve. This diagram shows the demand as a function of the price. The functions
are equal to demand = appeal − slope × log(price). For the base case, the appeal is equal to two and the
slope to one. The grey line has an appeal of three, while the dashed curve has a slope of 1/2.

3. Asset pricing anomalies

3.1. Sorted portfolios

A cornerstone result in financial economics is the capital asset pricing model (the CAPM, for
which we refer to Perold (2004) for a historical perspective). The CAPM states that individual
stock returns must solely be driven by their exposure to the aggregate market return. Any
empirical evidence in opposition to this property can be viewed as an anomaly with respect
to the baseline model. One of the workhorses to reveal anomalies is sorting, whereby assets
are ranked according to some particular attribute and portfolios are built based on these ranks
(low values versus high values of the attribute).11 If, over a sufficiently long period, the average
returns of the sorted portfolios are statistically different, it is assumed that an anomaly is
uncovered (see, e.g., Cattaneo et al. (2020) for a theoretical account on statistical tests). Often,
tests are performed via the null hypothesis that a long-short portfolio has a zero return, with for
instance stocks with high values clustered in the long leg minus stocks with low values aggregated
in the short leg. In our framework, this equally-weighted portfolio has a return equal to

r
(k)
t+1,LS = rt+1,+ − rt+1,− = N−1

+

N+∑
n+=1

rt+1,n+ − N−1
−

N−∑
n−=1

rt+1,n− , (26)

where n+ and n− are the indices of the assets with high versus low value of a particular char-
acteristic.12 Without loss of generality, let us consider that the sought anomaly relates to the

11Anomalies can also be revealed by regressions and we refer to Baker et al. (2017) for a detailed account on
this matter.

12Strictly speaking, the cross-section aggregation of logarithmic returns is not rigorous. Nevertheless, we proceed
with this approximation. One case where it would be too coarse is if the sorting characteristic is the volatility of
returns.
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kth characteristic, which explains the superscript in the l.h.s. of Equation (26). For simplicity,
we also assume that N+ = N− = N/2 so that each leg of the portfolio consists of half of the in-
vestment universe. This is a simple and common choice (see, e.g., Barberis and Shleifer (2003)),
though other fractions, such as thirds, quintiles and deciles are popular alternatives in the asset
pricing literature. We then get, using the first identity of the lemma,

r
(k)
t+1,LS = 2

N

∑
n±

[
K∑

k=1

(
β

(k)
t+1(c(k)

t,n+ − c
(k)
t,n−) + η

(k)
t (∆c

(k)
t,n+ − ∆c

(k)
t,n−)

)]
+ Λ(k)

t+1 + Ξ(k)
t+1,

=
K∑

k=1

(
β

(k)
t+1Ψ(k)

t + η
(k)
t Φ(k)

t

)
+ Λ(k)

t+1 + Ξ(k)
t+1,

with Ψ(k)
t = 2

N

(∑
n+ c

(k)
t,n+ −

∑
n− c

(k)
t,n−

)
being the net portfolio average of characteristics k and

Φ(k)
t = 2

N

(∑
n+ ∆c

(k)
t,n+ −

∑
n− ∆c

(k)
t,n−

)
the corresponding change thereof. The last terms in the

expressions Λ(k)
t+1 = 2

N

(∑
n+ αt+1,n+ −

∑
n− αt+1,n−

)
and Ξ(k)

t+1 = 2
N

(∑
n+ εt+1,n+ −

∑
n− εt+1,n−

)
average the latent demands and the pure supply-side components of the portfolio respectively,
and, for simplicity, we assume that

E
[
Ξ(k)

t+1

]
= 0, (27)

so that the unconditional average of time-(t + 1) returns is

r̄
(k)
t+1,LS = E [rt+1,LS ] = E

Λ(k)
t+1 + β

(k)
t+1Ψ(k)

t + η
(k)
t Φ(k)

t︸ ︷︷ ︸
component driven by char. k

+
∑
j ̸=k

β
(j)
t+1Ψ(j)

t + η
(j)
t Φ(j)

t︸ ︷︷ ︸
components driven by other chars.

 . (28)

The hypothesis that the shifts in the supply side are null on average in Equation (27) is again
a byproduct of our focusing solely on the demand side. The sources of anomalies that are not
driven by characteristics come from E

[
Λ(k)

t+1

]
only, which depends on k only through the sorting

procedure. In addition, from an estimation standpoint, if we allow for fixed effects in a panel
model, then the average error per asset will be zero, which implies that Ξ(k)

t+1 = 0 pointwise, that
is, for each characteristic k and estimation sample.

We then write µ
(k)
X = E[X(j)

t ], for the means of random variables, where X = {Ψ, Φ, β, η},
and σ

(k)
X,Y = E[(X(k)

t − µ
(k)
t )(Y (j)

s − µ
(j)
s )] for the covariance terms, where chronological indices

remain flexible to adapt for possible time shifts (e.g., for β and Ψ). The identity

E[XY ] = σX,Y + µXµY (29)

implies

r̄
(k)
t+1,LS = E

[
Λ(k)

t+1

]
+ σ

(k)
β,Ψ + µ

(k)
β µ

(k)
Ψ + σ

(k)
η,Φ + µ(k)

η µ
(k)
Φ +

∑
j ̸=k

(
σ

(j)
β,Ψ + µ

(j)
β µ

(j)
Ψ + σ

(j)
η,Φ + µ(j)

η µ
(j)
Φ

)
.

(30)
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3.2. Discussion on distributions

In order to gain further intuition, we must discuss some distributional properties of the elements
in Equation (28). The first major assumption that we make is

µ
(j)
Φ = E

[
Φ(j)

t

]
= 0, (31)

because there is no reason why, a priori, a sorted portfolio should see a non-zero shift in the
variation of its characteristic scores. This is also confirmed in the data and results are available
upon request.

The second important hypothesis we make is on the distribution of characteristics. We
suppose that, at for any given time, the data has been processed such that, across the cross-
section of stocks, characteristic k has a standard Gaussian distribution (with zero mean and
unit variance). In recent articles in asset pricing (Kelly et al. (2019), Freyberger et al. (2020)),
characteristics have uniform distributions. From that, it is easy to recover Gaussian laws by
applying the inverse cumulative distribution function to the properly “uniformized” values of
the characteristics. More generally, we posit that the cross-section of characteristics follows a
multivariate Gaussian law:

ct
d= N (0,Σt), with [Σt]i,i = 1 and [Σt]j,k = ρ

(j,k)
t . (32)

If the number of assets, N , is large enough, we can then approximate the aggregate portfolio
score for characteristic j = {1, . . . , K} with

Ψ(j)
t = 2

N

∑
n+

c
(j)
t,n+

−
∑
n−

c
(j)
t,n−

 −→
N→∞

E
ρ

(j,k)
t

[
c

(j)
t |c(k)

t > 0
]

− E
ρ

(j,k)
t

[
c

(j)
t |c(k)

t < 0
]

= 4√
2π

ρ
(j,k)
t , (33)

where the zero threshold in the conditional expectations is the median value of the characteristic
(we recall that the sorting procedure operates on characteristic k). Under Gaussian assumptions,
the strong law of large numbers warrants that the left part converges almost surely to ρ

(j,k)
t ,

which is the time-t correlation between characteristic j and characteristic k (see Appendix A
for a proof). One key point is that the left-hand side of the above equation is random, thus
we are obliged to envisage that the correlation term is stochastic as well. Empirically, this
makes perfectly sense because correlations between characteristics are likely to vary with time.13

Technically, this is why, in Equation (33), the expectations are conditional on this correlation
value.

This is however not true for Ψ(k)
t , which remains constant because when j = k there is no

interaction with other characteristics and the aggregate portfolio score is solely driven by the
way the characteristics are normalized. Thus, Ψ(k)

t = 4(2π)−1/2 is fixed and equal to its mean.
A similar reasoning can be applied to Φ(j)

t , which captures the aggregate change in char-
acteristic score of the long-short portfolio. Again, we assume that these changes are normally
distributed, with zero mean, but we do not impose any covariance structure. The overarching
distribution between the vectors Φ(j)

t and Ψ(j)
t is a 2K Gaussian vector for which some rows

13In machine learning, the change in the covariance structure of predictors is referred to as covariate shift - see,
e.g., Moreno-Torres et al. (2012).
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and columns of the covariance matrix are filled with zeros. Indeed, by definition, almost surely,
Φ(j)

t = 0 for j = k.
In turn, when N is large enough,

Φ(j)
t = 2

N

∑
n+

∆c
(j)
t,n+ −

∑
n−

∆c
(j)
t,n−

 −→
N→∞

4√
2π

ρ
(j,k)
t,∆ V

[
∆c

(j)
t

]1/2
,

where ρ∆
j,k is the correlation between the change ∆c

(j)
t,n and the level of the characteristic c

(k)
t,n .

The scaling constant comes from the identity in Appendix A. The bilinearity of the covariance
operator implies the following result, which shows that the average return of a characteristic-
sorted portfolio depends on the relationships with all other characteristics.

Lemma 3. Assume that (27) and (31) hold and that characteristics and their variations follow
centered Gaussian distributions. As the number of assets increases to infinity, we have that

r̄
(k)
t+1,LS −→

N→∞
E
[
Λ(k)

t+1

]
+ 4√

2π

(
µ

(k)
β + Cov

(∑
j ̸=k

β
(j)
t+1,

∑
j ̸=k

ρ
(j,k)
t

)
+ Cov

(∑
j ̸=k

η
(j)
t ,
∑
j ̸=k

ρ
(j,k)
t,∆ V

[
∆c

(j)
t

]1/2
))

.

(34)

The lemma suggests that the average return is captured by four components:

1. A first term (pure latent demands) that depends on the characteristic k independently
from the demand in this characteristic (and in any characteristic).

2. The average demand for the characteristic.
3. The covariance between i) summed demand shifts for all other characteristics and ii) the

summed correlation between characteristic k and all other characteristics;
4. The covariance between i) total past (scaled) demands for all other characteristics and ii)

the summed (over j) scaled correlations between shifts in characteristic j and the level of
characteristic k.

If characteristics are demeaned, E[XY ] + E[XZ] = E[X(Y + Z)] implies that the third
component is positive when the aggregate change in demand for all other characteristics is
positively correlated with the correlation between the characteristic and the sum of all other
characteristics. The fourth term is positive when the demand in all other characteristics is
positively related to the scaled correlation between the characteristic and the summed changes
in all other characteristics.

4. Estimation
The fundamental goal of the paper is to propose simple decompositions of asset returns. Given
the linear forms obtained above, we opt for simple panel models which have intuitive outputs
and interpretations. A notebook with the code used to generate our baseline results and a link
to the dataset is available here.
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4.1. Data

The starting point for our material is the dataset used in Gu et al. (2020), updated until
December 2021. Because there are large fluctuations in coverage in the early part of the sample
which are likely to perturb estimations, we trim off observations prior to January 1984. This
leaves 3.13 million firm-month pairs. The number of firms fluctuates between 5,471 and 9,140.

Each month, characteristics are processed to follow a standard Gaussian law, truncated
beyond ±3. This is achieved by uniformizing their distribution on [0.001, 0.999], and then
applying the quantile function of the normal law. This is a technical tweak that ensures that
the assumptions in Section 3.2 are satisfied. Finally, we evaluate differences in characteristics
to obtain the ∆c

(k)
t,n . To ease readability when plotting estimation output, we will focus on three

firm characteristics: firm size, book-to-market ratio, and past performance (prior 12 month to 1
month return) as a proxy for momentum. Estimations are however performed for all variables.

4.2. Baseline output

The linear relationships outlined in Lemma 2 call for a panel-based estimation of scaled demands
and changes in demands, which we assumed fixed over chronologically compact samples. Re-
turns, characteristics (scores) and changes in characteristics are observed so that the α(k), β(k)

and η(k) are the unknowns. Our baseline configuration encompasses all 93 characteristics plus
the 93 changes thereof as independent variables. We use rolling samples for dynamic estimation
and our default window comprises two year of data, which makes at most 24 monthly points for
each firm. The rationale for this choice is the following: first, we want local estimates. Indeed,
if loadings are time-invariant they should be so on short periods. But at the same time, short
samples (e.g., 6 to 12 months) yield noisy matrices,14 because the ratio between the number
of observations and the (large) number of predictors is too small. This issue will be confirmed
in Section 4.3 below. Two years is thus a reasonable trade-off, which anyway will soon be re-
laxed. Estimations are updated every twelve months, which implies a one year overlap between
consecutive samples.

In Figure 2, we plot the time-series of t-statistics pertaining to the β̂
(k)
t and η̂

(k)
t rolling esti-

mates of Equation (21). The values when considering Equation (22) as model are qualitatively
very similar. We do not produce them as they do not provide incremental added value. We show
the t-statistics instead of coefficient values because they are a better indicator of the significance
of the demands for characteristics. Only the three main asset pricing characteristics are depicted
because it plotting 93 curves would bear little insight.

The values we report correspond to the least squares dummy variables (LSDV) estimator
based on rolling samples of 24 months. We do not consider random effect models because the
stock-specific constant (i.e., latent demand) in the expression of the returns is a quantity that
should be estimated, just like the loadings on the other variables. Samples of 12 or 36 months
yield qualitatively similar results and are available upon request.

The most salient pattern we observe is the overwhelmingly negative values associated with
market capitalization, which corroborates the size effect (Banz (1981), Van Dijk (2011)). Changes
in equity are linked to coefficients that are less significant, however. The t-statistics for book-
to-market are mostly positive, but also less significant, and the figures for changes in value

14Because some fields are only updated quarterly or annually, estimations with fewer than 4 months of data
are not even defined because of colinearity.
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Fig. 2. Time-series of t-statistics. We plot the time-series of the t-statistics pertaining to β̂
(k)
t

(upper panel) and η̂
(k)
t (lower panel) estimated from Equation (21) - with locally constant coefficients.

Estimations are run on the prior 24 months with all 93 characteristics and changes thereof. Dashed
black lines mark the ±2.5 thresholds, which correspond to a 1% significance level.

fluctuate around zero. For the momentum anomaly, the t-statistics also oscillate, often within
the non-significance boundaries. Lastly, we underline the strong difference in absolute values of
t-statistics between the two panels: there is much more significance for the characteristics, and
less for their variations.

4.3. Fixed effects and fit: the sample size effect

To further investigate the properties of our models and estimations, we turn to in-sample fit, as
measured by the traditional R2. In the left panel of Figure 3, we produce the time-series of the
R2 and we extend the 24 samples to shorter and longer sizes. The most salient pattern is that
the R2 decreases with sample size. This was expected, because, as the sample size increases, the
ratio between the number of predictors and the number of observations decreases, which reduces
the potential to fit.

A legitimate question pertains to out-of-sample fit. While this is somewhat out of the scope
of the paper, we briefly mention some unreported results. The values we obtained are also
quite time-varying but mostly negative and hence rather disappointing. This lower predictive
accuracy may be due to over-fitting for instance.15

15The time-varying accuracy of dynamic forecasting models is not surprising and was recently documented in
Farmer et al. (2022) for the prediction of the equity premium. In addition, negative out-of-sample R2 are also
not uncommon (see Kelly et al. (2021), Coqueret (2022), Cakici and Zaremba (2022), and the linear models of
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Fig. 3. R-squared and fixed effects. We plot the time-series of the in-sample R2 (left) and of extreme
cross-sectional quantiles of α̂t,n estimated from Equation (21) (right). Estimations are performed on
rolling samples of the prior 12, 24, 60 or 120 months with all 93 characteristics and their variations.

Next, in the right panel of Figure 3, we plot the the time-series of the extreme deciles of
the fixed effects (α̂t,n, estimated from Equation (21)). Here again, the sample size is a clear
driver of our results. As it increases, the distribution of fixed effects narrows. Fundamentally,
the dispersion of fixed effects is an important indicator because it reveals if the independent
variables (characteristics) are able to capture and explain the diversity in the cross-section of
returns. Given the scales in the right panel of Figure 3 (±0.5 for the extreme deciles), it appears
that fixed effects, or “latent demands”, as Koijen and Yogo (2019) call them, remain important,
in absolute terms. We will further investigate this question in Section 5.

The curves in Figure 3 show that our estimates can be highly dependent on the sample size.
Below, we explain why that is the case.

If we stack the coefficients into ζ = (β,η), then Equation (10.50) in Wooldridge (2010)
implies that

ζ̂ =
(

N∑
n=1

T∑
t=1

z̈′
t,nz̈t,n

)−1( N∑
n=1

T∑
t=1

z̈′
t,nr̈t+1,n

)
, (35)

where z̈t,n is the vector of predictors that is demeaned (column-wise) at the stock level and

Gu et al. (2020)), as they often stem from exceedingly large predictions in the numerator of

R2
oos = 1 −

∑Nt

n=1(rt+1,n − r̃t+1,n)2∑Nt

n=1 rt+1,n − r̄t+1,n)2
,

where r̄t+1,n in the denominator is the cross-sectional average of realized returns and r̃t+1,n in the numerator
is the prediction from the model based on estimates computed from the sample strictly prior to t + 1. In other
contexts, the disappointing performance of conditional pricing models has previously been reported in Ghysels
(1998), Lewellen and Nagel (2006), and Simin (2008).
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r̈t+1,n is the similarly demeaned future return.
According to Equation (10.58) in Wooldridge (2010), the expression for fixed-effects obtained

from the LSDV estimator is

α̂n = r̄n −
K∑

k=1

(
β̂(k)c̄(k)

n + η̂(k)∆̄c
(k)
n

)
, (36)

where β̂(k) and η̂(k) are the LSDV estimates from (35) and r̄n, c̄
(k)
n and ∆̄c

(k)
n the sample average

of future returns, characteristics, and their changes.
In Figure 3, the magnitude of extreme fixed effects for small sample sizes (e.g., 12 months

in the right panel) is several orders larger than that pertaining to longer sample sizes (e.g., 120
months). This sizeable dispersion in fixed effects has at least two origins. First, it comes from the
estimated coefficients, which correspond to the right term (sum) in Equation (36). When samples
are small, the inverse in (35) is not well conditioned, which implies larger magnitudes for ζ̂ (i.e.,
β̂ and η̂), all other things equal. Indeed, small sample sizes imply that the smallest eigenvalues
of the matrix to be inverted are close to zero. Upon inversion, the related values become
arbitrarily large, which generates sizeable elements in the matrix and thus in the estimates.16

For a 12 month sample of 6,000 firms (72,000 observations), there are 6,186 columns in the
original data matrix, encompassing all dummy variables plus the 186 predictors. Moreover,
some characteristics are highly correlated, which generates multi-colinearity. This contributes
to the bad conditioning of the first matrix in Equation (35) and hence to dispersion in coefficients.

The second source of dispersion lies in the sample averages in (36). Under an i.i.d. as-
sumption on data generation, it is easy to show that large sample sizes decrease the variance
of cross-sectional average. In Appendix C, we formally prove this statement and show in Fig-
ure 9 that multiplying the sample size five-fold (e.g., from 12 to 60 or from 24 to 120) divides
the dispersion (standard deviation of mean returns) by two on average. This creates a strong
dependence on the sample size for the estimation of Λ(k)

t+1 in Equation (34). In practice how-
ever, returns are not i.i.d., and, locally, firms can experience extreme positive or negative price
fluctuations, which generates a lot of heterogeneity in the cross-section. In contrast, in the long
term, performance is smoothed and discrepancies between firms are less pronounced. These two
sources of dispersion could of course cancel out, but, as is shown below, this will not be the case
empirically.

4.4. Anomaly decomposition

Lemma 3 decomposes the average return of long-short portfolios based on characteristic sorting.
There are four terms: the idiosyncratic demand term (based on fixed effects posterior to esti-
mation), one average demand term and two covariance terms. Each one of them requires the
computation of an expectation.

In Figure 4, we plot estimates of Λ(k)
t+1 and β

(k)
t+1 for three characteristics (in sub-panels),

along with average returns of rolling samples. The grey lines show the difference between the
16This is a very qualitative statement. Let us assume that the predictors are i.i.d. and multivariate Gaussian.

While asymptotic results are well covered by the literature when the samples are large, the law of the spectrum of
covariance matrices is less documented for finite samples (see Rudelson and Vershynin (2010)). The distribution
of the smallest eigenvalue (which matters substantially in the conditioning of the matrix) is treated in Edelman
(1991). Further results on condition numbers are obtained in Edelman (1988) and Edelman and Sutton (2005).
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average returns and the sum of the two terms and thus serve as proxy for the last two terms
in (34), which consist of covariances. For the size factor (middle panel), the loadings and fixed
effects cancel out, meaning that the covariance terms (thick grey line) are relatively marginal.
For the other two anomalies, this is not the case and fixed effects outweigh the loadings in
amplitude, leaving room for the covariance interactions. In sum, the compensation of large fixed
effects requires important interaction terms for the value and momentum anomalies. As we
reveal in the next section, there are other compensation effects involving latent demands in the
decomposition of average returns.
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Fig. 4. Anomaly decomposition. We plot the time-series of the sample average of r̄
(k)
t+1,LS (thin red

line), of sample estimates of β̂
(k)
t+1 (times 4/

√
π) and Λ̂(k)

t+1 (dotted lines). The thick grey curves show the
average return minus the two terms (loadings and fixed effects), and approximate the sum of covariance
terms in (34). Estimates rely on rolling samples of 24 months.

5. Characteristics versus latent demands

5.1. Reframing the question

In this section, we revert to our initial problem which asks why firms experience different returns.
The evidence from the previous subsection (and Figures 3 and 4) suggests that a substantial
portion of average returns can be explained with latent demands (fixed effects). This challenges
the usefulness of characteristics in capturing the diversity in the cross-section of average returns.
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Simply put, if we reorder Equation (36), we have that average forward returns are equal to

r̄n︸ ︷︷ ︸
average future return

= α̂n︸ ︷︷ ︸
latent demand

+ f̄(characteristicsn)︸ ︷︷ ︸
average char.-based value

. (37)

Hence, the models, which are based on characteristics, are valuable in explaining the cross-
section of future returns only if the α̂n are small in magnitude, as the latter are the components
of returns that are not explained by the model. In a standard panel model, if we are very
conservative, we can even impose that the α̂n should all be statistically indistinguishable from
zero, and this is exactly the specification of the null hypothesis in the so-called GRS test (Gibbons
et al. (1989)) in the context of factor relevance.

This test is known to be prone to high likelihood of rejection, even in standard contexts
where factors (on the r.h.s. of the equation) are synchronous with returns (on the l.h.s.). For
instance, Barillas and Shanken (2018) report significant GRS statistics and note that “models
are routinely rejected at conventional levels by the GRS test”. More sophisticated approaches,
e.g. the one of Ang and Kristensen (2012), also often reject the null that averaged conditional
alphas are zero. In a specification where the model is predictive (i.e., there is a time lag between
the l.h.s. variables and those in the r.h.s.), as in Equation (21), the odds of rejecting the null
are even larger because the model cannot be expected to capture the entirety of variations in
future returns.

If the α̂n are all jointly equal to zero, it is clear that the model (and hence the characteristics)
does a great job at explaining or predicting average returns. However, the model may also be
useful under much less stringent conditions. Fundamentally, we are interested in the diversity
of average returns in the cross-section. This can be captured simply by taking the standard
deviation of the r̄n, which we write σr. If σr = 0, then all average returns are the same and
there is no variation in cross-sectional performance. Of course, this is never the case, and the
core goal of asset pricing is to understand why asset deliver different returns. Based on Equation
(37), we therefore propose a decomposition for the cross-sectional variance of average returns:

σ2
r = Cov[r̄n, r̄n]︸ ︷︷ ︸ = Cov[r̄n, α̂n + f̄(xn)]

variation in
mean returns = Cov[r̄n, α̂n]︸ ︷︷ ︸

covariance with effects

+ Cov[r̄n, f̄(xn)]︸ ︷︷ ︸
covariance with char. model

. (38)

Based on this decomposition, we specify two types of models in Definition 4.

Definition 4. Given the decomposition in Equation (38), we say that the estimated model is

• characteristics-relevant (CR) if Cov(r̄n, f̂(xn)) > 0, and
• non-CR otherwise.

Simply put, we consider that a model makes efficient use of characteristics if its characteristics-
driven output is positively correlated with average returns. Indeed, if not, as we will see below,
this means that the portion of the model that explains returns (with the correct sign) comes
from fixed effects (latent demands) and is therefore unrelated to characteristics. In Figure 5,
we plot the corresponding sample quantities, computed after each estimation. The element that
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is decomposed is the yellow line in the middle of the panels. The blue line, which depicts the
covariance with the characteristics-based elements, lies below zero, meaning that the estima-
tion is not CR. As the sample size increases (lower panels), the dispersion in the cross-section
shrinks and the phenomenon is slightly less marked. However, our results unambiguously point
to a limited relevance of characteristics in linear asset pricing. This is very consistent with the
findings of Koijen and Yogo (2019), albeit with a substantially different estimation method.
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Fig. 5. Decomposition of cross-sectional dispersion in returns. We plot the time-series of the
sample quantities in Equation (38). First, models are estimated, yielding average returns, fixed effects
and predictions. Second, we compute the variance and covariance terms across all firms in the sample.
Four sizes are depicted, from 12 months (upper panel) to 120 months (lower panel). For the lower panels,
the curves start later because of the required estimation buffer period.

5.2. Alternative configurations

There is an ongoing debate among asset pricing researchers about the optimal number of char-
acteristics that should be used in models. Some advocate parsimony (Fama and French (2015),
Hou et al. (2015)), while others contend that large cross-sections of attributes improve the ex-
planatory power (DeMiguel et al. (2020), Bryzgalova et al. (2021), He et al. (2021) and Han
et al. (2022)). The middle ground, with 10 to 15 useful characteristics, is recommended by
Green et al. (2017) and Freyberger et al. (2020).

Because of this lack of agreement, we complement our initial results by estimating coeffi-
cients for both a low-dimensional model and a large one. The low dimensional model consists
in retaining only the three baseline characteristics (size (mvel1 ), value (bm) and momentum
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(mom12m)) for the estimation, along with their changes.
For the large model, we augment our dataset with macro-economic variables, as in Gu et al.

(2020). Indeed, it is likely that macro-economic conditions influence agents’ investing decisions.
In the most general form of our model, in Equation (7), this would mean that the functions gt,i

not only depend on characteristics, but also on proxies that capture the state of the economic
environment. As an extension of our baseline results, we follow Gu et al. (2020) and consider
that macro-economic variables have a multiplicative effect on demands. Thus, it suffices to run
the original models with the predictors augmented (M + 1)-fold, where M is the number of
chosen macro proxies. We consider M = 3 variables, taken from the study of Welch and Goyal
(2008).17 This makes 94 × (3 + 1) × 2 = 752 predictors in total if we count characteristics and
their changes.

In Figure 6, we depict the decomposition from Equation (38). The results are very close to
the second panel of Figure 5 (24 month samples), and hence, both models are, too, not CR. In
particular, the scale of the peaks (≈ 0.007) are almost identical. Consequently, and surprisingly,
the size of model, as proxied by the number of its independent variables, does not change the
outcome, so that, again, the characteristics-based component yield mostly values that have to
be compensated by the latent demands.
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Fig. 6. Variance decomposition with alternative predictor sets. We plot the time-series of the
sample quantities in Equation (38). Estimations are performed on rolling samples of the prior 24 months
with 3+3 (upper panel) or 376+376 (lower panel) characteristics and their variations. In the first case,
the characteristics are market capitalization (size), book-to-market (value), and momentum.

17They include: aggregate book-to-market ratio (bm), Treasury-bill rate (tbl), and default spread (dfy).
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5.3. Nonlinear demands

If we go back to the general formulation of returns from Equation (12), we can simplify the
expression to

rt+1,n = a∆
t+1,n +

I∑
i=1

Bt+1,igt+1,i(ct,n)︸ ︷︷ ︸
N1(ct,n)

−
I∑

i=1
Bt,igt,i(ct−1,n)︸ ︷︷ ︸

N2(ct−1,n)

+ϵt+1,n, (39)

where a∆
t+1,n = ∑I

i=1(Bt+1,iat+1,i,n − Bt,iat,i,n) is the stock-specific, characteristics-independent,
constant. Econometrically, the above equation can be specified and estimated as the sum of two
neural networks, N1 and N2, each with I units in their last layer (before aggregation) and each
unit taking as input a possibly complex sub-network to generate nonlinearities (in gt+1 and gt).18

The constants a∆
t+1,n are the biases in the last layer of the overarching network. Practically, they

will be estimated via a large number of dummy variables that will be added to characteristics
as inputs to the global network.

Below, we test two configurations for the two neural networks N1 and N2:

• in the baseline configuration, both networks have two intermediate layers with 32 and
16 units, respectively. The first layer has a rectified linear unit as activation function. The
second layer has a hyperbolic tangent activation in order to scale the output (see Aldridge
and Avellaneda (2019)). Importantly, units in the last layer do not have internal biases,
as we impose them exogenously with the dummy variables. This allows us to capture the
latent demands.

• in the sophisticated configuration, both networks have three intermediate layers, with
32, 16 and 8 units. The first layer has a rectified linear unit as activation function. The
second and third layers have a hyperbolic tangent activation. Again, units do not have
internal biases. In addition, as in Gu et al. (2020), we add a penalization term for all
units in the first two layers. This term is the L1 norm of weights with a scaling constant of
0.01, the default value, and it acts as constraint on the magnitude of the layers’ weights.

During training, we resort to batches of 2,000 randomly selected observations and run 100
epochs in total for each time period (i.e., training sample). All of our model parameters, which
determine the architecture of the networks and how they are trained, are arguably standard and
close or equal to those used by Gu et al. (2020). As in our baseline model, samples consist of
24 months of data, thus if there are 6,000 firms, this makes 144,000 observations for a given
training set.

The decomposition of the cross-sectional variance in average returns is shown in Figure 7
for models based on neural networks. An interesting feature is that the scale of covariances is
slightly larger in magnitude, compared to the second panel of Figure 5, implying that complexity
does not increase the relevance of the characteristics-based component of the model. The pairs
of curves are close, meaning that conclusions are robust to changes in the architecture of the
networks.

18Combinations of neural networks have recently emerged in the asset pricing literature, see for example Gu
et al. (2021) in a different context. More generally, nonlinearities in asset pricing are documented in Kirby (2020).
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Fig. 7. Variance decomposition with neural networks. We plot the time-series of the sample
quantities in Equation (38). Estimations are performed on rolling samples of the prior 24 months. Values
for the baseline configuration are shown with hard lines, while those for the sophisticated model are
represented with dotted lines.

5.4. Sparse demands

The evidence from the previous sections suggest that the characteristics-based components of
estimated models are negatively correlated with average returns. One possible explanation
is that characteristics carry too much noise. One representation may be that a few useful
characteristics are drowned in a majority of irrelevant ones.

In light of these conclusions, we propose a last batch of models that are designed to overcome
these drawbacks. The idea is basic: we seek to reduce the magnitude and number of nonzero
model coefficients via LASSO regressions (Tibshirani (1996)) so as to select only the most
pertinent characteristics. We thus run our baseline experiment, but with penalized regressions
and in this case, we cannot use the simple form from Equation (35). The dummy variables must
be generated to extract fixed effects, and we apply the LASSO estimator on the resulting data.
The only, but crucial, degree of freedom is the penalization intensity (λ) that is applied to the
L1 norm of coefficients. To illustrate its impact, we will report two series of results, one for
λ = 0.0003 (low penalization) and one for λ = 0.001 (high penalization).

In Figure 8, we depict the variance decomposition in the left panels, for the low penalization
regime (upper plot) and high penalization regime (lower plot). In contrast to all previous models,
both configurations are characteristics-relevant, as the covariance of mean returns and model
terms is always above zero.

There are two main differences between the two penalization levels. First, the left panel of
Figure 8 show that the dominating terms in the decomposition are not the same. With low
penalization, the covariance with fixed effects (in red) lies most of the time above that of model
values (in blue). However, when penalization is large, the situation reverses.

The second notable difference between the low and high penalization regimes lies in the right
panels, which show the proportion of coefficients that survive the LASSO selection. Mechani-
cally, a higher penalization implies a smaller proportion of surviving predictors. With limited
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Fig. 8. Sparse demands. In the left panels, we plot the time-series of the sample quantities in Equation
(38). The upper panel pertains to a small penalization constant (λ = 0.0003) and the upper one to a large
constant (λ = 0.001). The right panels show the proportion of coefficients that have not been shrunk to
zero by the penalization. Estimations are performed on rolling samples of the prior 24 months.

penalization, slightly more than half of characteristics remain, on average, while the number is
only around one third for the dummy variables (fixed effects, i.e., latent demands). With regard
to the high penalization regime, the numbers are logically lower: close to 25% on average for
characteristics, but well below 5% for the fixed effects. In both situations, the two types in
independent variables are not impacted equally: characteristics are less impacted - but they are
also less numerous to begin with.

In short, the relative importance of the characteristics-driven term increases with the LASSO
penalty. This means that reducing the number of predictors improves the relevance of charac-
teristics. It is as if the cross-section of characteristics generates substantial noise, but when
wisely hand-picking a reasonable number of them, this noise, as well as the influence of latent
demands, vanishes. The optimal number of characteristics is neither large or small, but rather
around a few dozens. Crucially, the relevant predictors must be allowed to change in time.
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Variable Average coefficient (×103) Proportion of nonzero coefficient
high penalization low penalization high penalization high penalization

mom1m -3.474 -7.556 0.919 1.000
std_turn 1.783 4.578 0.622 0.838
turn -1.117 -5.071 0.622 0.973
mvel1 -1.127 -4.892 0.324 0.757
rd_mve 1.556 2.771 0.459 0.784
mom36m -0.954 -2.982 0.622 0.865
mom12m 0.213 -4.105 0.865 0.730
idiovol -0.775 -2.454 0.568 0.649
retvol -1.175 -1.901 0.568 0.838
mom6m 0.240 -3.270 0.270 0.838
zerotrade -0.630 -2.058 0.216 0.514
lev 0.580 1.741 0.432 0.757

Table 1: Most resilient characteristics. This table lists the 12 characteristics that survive the
LASSO selection the most often. The first two numerical columns gather the average coefficient
(across all sampling dates), while the last two show the proportion of times that the variables
have a nonzero coefficient in the model. Low (resp. high) penalization corresponds to λ = 0.0003
(resp. to λ = 0.001)

To complete our analysis, we report in Table 1 the characteristics that are the most often
chosen by the LASSO. Interestingly, many of them (momentum, turnover and size (via mvel1 )
also appear at the top of the list of important variables in Gu et al. (2020). In particular,
momentum-driven variables are ubiquitous.
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6. Conclusion
In this article, we derive expressions for asset returns that depend on assets’ characteristics
and changes thereof, possibly in a linear form. The main modelling assumption is that agents
have preferences that can be expressed in two separable components: the logarithm of the price
of the asset, and a linear combination of its characteristics. From an estimation standpoint,
returns and characteristics are given, and loadings are estimated via panel regressions on short
samples and with fixed effects. The main novelty compared to standard models is that we include
changes in characteristics. According to the equilibrium formula, the coefficients pertaining to
these changes can be viewed as the scaled demands for characteristics which measure the net
appetite for these characteristics.

Our contribution is theoretical in nature and proposes an interpretation for estimates of
panel models in asset pricing. Our empirical results rely on rolling estimates that crucially
depend on sample sizes. The latter have a sizeable impact on the magnitude of the fixed
effects, i.e., latent demands. Nevertheless, these demands that cannot be explained through
characteristics are prominent in most of the model specifications we propose. The models that
do the most justice to traditional asset pricing characteristics are those with a selection layer
whereby the LASSO dynamically removes a large portion of unnecessary characteristics (70%-
80%) and latent demands (90%-95%). Just like there are pockets of predictability, there are
pockets of relevance for characteristics. This finding contributes to the literature on the optimal
number of characteristics or factors in empirical asset pricing.

Finally, a natural extension would be to generalize the model to account for an increasing
set of predictors, because a framework that handles the dynamic inclusion of new characteristics
would make more sense. The rise of alternative data based on sustainability, sentiment, now-
casted earnings and macroeconomic variables, etc., paves the way to sophisticated models in
which the number of features slowly increases with time - as technology progressively provides
investors with myriads of characteristics.
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Appendix A. Identity on a conditional expectation
Consider a bivariate Gaussian distribution (Y, Z) with zero mean, variances σ2

y and σ2
z , and

correlation ρ ∈ [−1, 1]. Y is the sorting variable. We are interested in

E[Z1{Y >m}]
P [Y > m] −

E[Z1{Y <m}]
P [Y < m] .

If m is the median of Y (here, zero), this simplifies to

2E[Z(1{Y >0} − 1{Y <0})] = 2E[Z(1{Y >0} − 1{Y <0})] = 2E[Z(1 − 2 × 1{Y <0})] = 4E[Z1{Y >0}]

= 4
∫ ∞

0

e−y2/(2σ2
y(1−ρ2))

2πσ2
yσ2

z

√
1 − ρ2

(∫
R

ze−(z2−2ρyzσz/σy)/(2σ2
z(1−ρ2))dz

)
dy

= 4
∫ ∞

0

e−y2/(2σ2
y(1−ρ2))

2πσyσz

√
1 − ρ2

(
ρy

σz

σy

√
2σ2

zπ(1 − ρ2)e(ρy)2/(2σ2
yσ2

z(1−ρ2))
)

dy

= 4ρ
σz

σ2
y

∫ ∞

0
y

e−y2/(2σ2
y)

√
2π

dy = 4√
2π

ρσz

where the integral result in the third line comes from Gradshteyn and Ryzhik (2007), equation
3.462-6, and the final equality is relatively standard and it is a simple case of equation 3.462-5.

Appendix B. Linear demands
Agent i believes the returns are driven by: rt+1 = Ctβt+1,i + et+1, where the (N × 1) vector of
errors is independent from all other terms and has a zero mean vector and a covariance matrix
diag(σ2

e,i), where σ2
e,i is the vector of variances of errors. Thus,

r̄t = Et,i[rt+1] = CtEt,i[βt+1,i] = Ctβ̂t,i, (40)
Vt,i[rt+1] = Et[(rt+1 − r̄t)(rt+1 − r̄t)′] = CtΣ̂β,t,iC

′
t − r̄tr̄

′
t + diag(σ̂2

e,i) (41)

with Σ̂β,t,i = Et,i[βt+1β
′
t+1] being agent i’s time-t estimate covariance structure of the loadings.

Likewise, β̂t,i is the time-t estimate of the vector of expected loadings and σ̂2
e,i the expected (or

estimated) variances of errors (we omit the time index for notational simplicity).
Using the Sherman-Morrison identity, we obtain a simplified expression for the estimation of the
covariance matrix:

Vt,i[rt+1]−1 = M−1
(
IN + r̄tr̄

′
tM

−1

1 + r̄′
tM

−1r̄t

)
, (42)

with M := M(Ct, Σ̂β,t,i, σ̂
2
e,i) = CtΣ̂β,t,iC

′
t + diag(σ̂2

e,i). An application of a more general
Woodbury identity19 yields

M−1 =
(
IN − diag(σ̂2

e,i)−1Ct(IK + Σ̂β,t,iC
′
tdiag(σ̂2

e,i)−1Ct)−1Σ̂β,t,iC
′
t

)
diag(σ̂2

e,i)−1. (43)

19Namely, (I + AB)−1 = I − A(I + BA)−1B. Our application of this identity first factors out the diagonal
matrix of error variance to obtain the identity matrix.
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Now, the traditional mean-variance solution is

w∗
t,i = argmax

w

{
w′r̄t − γt,i

2 w′Vt,i[rt+1]w, s.t w′1 = b

}
= γ−1

t,i Vt,i[rt+1]−1(r̄t + δt,i1),

where the constant δt,i is chosen to satisfy the budget constraint. From this, we infer that the
optimal weights satisfy the proportionality relationship

w∗
t,i(Ct, β̂t,i, Σ̂β,t,i, σ̂

2
e,i) = M−1

(
IN +

Ctβ̂t,iβ̂
′
t,iC

′
tM

−1

1 + β̂′
t,iC

′
tM

−1Ctβ̂t,i

)
(Ctβ̂t,i + δt,i1).

Thus, for one asset, the form of M−1 given in (43) allows to write

wt,i,n = fi,n,1(Ct, β̂t,i, Σ̂β,i, σ̂
2
e,i) +

K∑
k=0

c
(k)
t,n × fi,n,2(Ct, β̂t,i, Σ̂β,i, σ̂

2
e,i),

with

fi,n,2 ∝ −σ̂−2
e,i,n

[
(IK + Σ̂β,t,iC

′
tdiag(σ̂2

e,i)−1Ct)−1Σ̂β,t,iC
′
tdiag(σ̂2

e,i)−1 (44)

×
(
IN +

Ctβ̂t,iβ̂
′
t,iC

′
tM

−1

1 + β̂′
t,iC

′
tM

−1Ctβ̂t,i

)
(Ctβ̂t,i + δt,i1)

]
n,·

(45)

fi,n,1 ∝ −σ̂−2
e,i,n

[(
IN +

Ctβ̂t,iβ̂
′
t,iC

′
tM

−1

1 + β̂′
t,iC

′
tM

−1Ctβ̂t,i

)]
n,·

(Ctβ̂t,i + δt,i1) (46)

where [M ]n,· stands for the nth row vector of matrix M and σ̂e,i,n is the nth element of σ̂e,i.
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Appendix C. Dispersion of cross-sectional sample means
We consider a variable zt,n observed at time t across N dimensions indexed by n (e.g., assets).
We assume that the N -dimensional vector zt is i.i.d. through time and follows some Gaussian
distribution with mean vector µ = (µn){1≤n≤N} and covariance matrix Ω = (ωij){1≤i,j≤N}. The
average dispersion (variance) in cross-sectional sample means20 is equal to

C = E

N−1
N∑

n=1

(
T∑

t=1

zt,n

T
−

N∑
l=1

T∑
t=1

zt,l

NT

)2
= 1

N

N∑
n=1

E

∑
s,t

zt,nzs,n

T 2 +
∑
l,m

∑
s,t

zt,lzs,m

(NT )2 − 2
N∑

l=1

∑
s,t

zt,nzs,l

NT 2


= 1

N

N∑
n=1

ωn,n + Tµ2
n

T
+
∑
l,m

ωl,m + Tµlµm

N2T
− 2

N∑
l=1

ωl,n + Tµlµn

NT


= 1

N

N∑
n=1

[
ωn,n + Tµ2

n

T
−

N∑
l=1

ωl,n + Tµlµn

NT

]

= 1
N

N∑
n=1

(
µ2

n − 1
N

N∑
l=1

µlµn

)
+ 1

NT

N∑
n=1

(
ωn,n − 1

N

N∑
l=1

ωl,n

)

Both terms are positive for the same reasons. The second is, e.g., larger than 1
2NT

∑
l,m(ωl,l −

ωm,m)2.21 Therefore, as the sample size increases, the dispersion in sample means decreases to
the true variance in means.

In Figure 9, we plot the time-series of the square root of the cross-sectional dispersion defined
as N−1∑N

n=1

(∑T
t=1

zt,n

T −
∑N

l=1
∑T

t=1
zt,l

NT

)2
when zt,n is the return of the stocks in the sample.

We observe that multiplying the sample size by five divides the standard deviation by a factor
2-2.5 on average. This translates into a dispersion that is four times smaller for the deeper
sample.

20When T = 1, i.e., the dispersion is not over means but over simple returns, we refer to Grant and Satchell
(2016) for theoretical results.

21This comes from the correlations being smaller than one in magnitude and, loosely speaking, from the identity∑
i,j

(a2
i − aiaj) = 1

2
∑

i,j
(ai − aj)2.
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Fig. 9. Dispersion of sample means. We plot the time-series of the standard deviation of average
returns in the cross-section. Two sample sizes (T ) are tested: 12 months and 60 months. The latter remain
constant for five years. The values for 2021 are omitted because they are evaluated on an incomplete
sample.
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